skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barton, Christopher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. The new, quaternary diamond-like semiconductor (DLS) Cu 4 MnGe 2 S 7 was prepared at high-temperature from a stoichiometric reaction of the elements under vacuum. Single crystal X-ray diffraction data were used to solve and refine the structure in the polar space group Cc. Cu 4 MnGe 2 S 7 features [Ge 2 S 7 ] 6− units and adopts the Cu 5 Si 2 S 7 structure type that can be considered a derivative of the hexagonal diamond structure. The DLS Cu 2 MnGeS 4 with the wurtz-stannite structure was similarly prepared at a lower temperature. The achievement of relatively phase-pure samples, confirmed by X-ray powder diffraction data, was nontrival as differential thermal analysis shows an incongruent melting behaviour for both compounds at relatively high temperature. The dark red Cu 2 MnGeS 4 and Cu 4 MnGe 2 S 7 compounds exhibit direct optical bandgaps of 2.21 and 1.98 eV, respectively. The infrared (IR) spectra indicate potentially wide windows of optical transparency up to 25 μm for both materials. Using the Kurtz–Perry powder method, the second-order nonlinear optical susceptibility, χ (2) , values for Cu 2 MnGeS 4 and Cu 4 MnGe 2 S 7 were estimated to be 16.9 ± 2.0 pm V −1 and 2.33 ± 0.86 pm V −1 , respectively, by comparing with an optical-quality standard reference material, AgGaSe 2 (AGSe). Cu 2 MnGeS 4 was found to be phase matchable at λ = 3100 nm, whereas Cu 4 MnGe 2 S 7 was determined to be non-phase matchable at λ = 1600 nm. The weak SHG response of Cu 4 MnGe 2 S 7 precluded phase-matching studies at longer wavelengths. The laser-induced damage threshold (LIDT) for Cu 2 MnGeS 4 was estimated to be ∼0.1 GW cm −2 at λ = 1064 nm (pulse width: τ = 30 ps), while the LIDT for Cu 4 MnGe 2 S 7 could not be ascertained due to its weak response. The significant variance in NLO properties can be reasoned using the results from electronic structure calculations. 
    more » « less